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Synthetic chiral chromophoric bilayer 
membranes as chemical transducers: effect 
of alcohols on enhanced circular dichroism 

KOJI N A K A N O ,  I S A M U  M O R I G U C H I ,  N A O T O S H I  N A K A S H I M A * ,  
M A K O T O  T A K A G I *  
Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Fukuoka 812, 
Japan 

A bilayer-forming synthetic lipid containing a chiral centre and a chromophoric group was 
investigated as a spectroscopic transducer, based on its enhanced circular dichroism (CD). 
The CD intensity of chiral bilayers was reduced with addition of alcohol. For ten additives 
tested, a linear correlation was observed between the CD spectral response to the alcohols 
and their partition coefficient (log P) in octanol/water system. By use of an immobilization 
technique, the bilayer film was obtained on a quartz plate, and a possible application as a 
solid-phase assay of methanol was demonstrated. 

1. I n t r o d u c t i o n  
Bilayer formation has been observed for a number of 
synthetic amphiphiles. These synthetic bilayers pos- 
sess physicochemical properties fundamentally similar 
to those of natural lipid membranes [1]. Thus they are 
of interest in the construction of molecular trans- 
duction devices to mimic biological membranes 
[2-7]. 

Some synthetic double-chain amphiphiles contain- 
ing a chiral centre and a chromophoric group show 
marked enhancement of circular dichroism (CD) in 
aqueous bilayer dispersion [-8, 9]. The CD intensity 
reduces when the ordered configuration of the chro- 
mophores in chiral bilayers is disturbed by phase 
transition (Fig. 1). This phenomenon should offer a 
possible application of these bilayers as a spectro- 
scopic transducer for a variety of chemicals which 

interact with the oriented bilayer assemblies and 
change their organized structure. 

In the present study, the effect of alcohols on the CD 
intensity of 2C 12GluphC4N + bilayer was studied. The 
immobilization of aqueous bilayer assemblies is pos- 
sible using some recently developed techniques 
[10-12]. By taking advantage of the formation of 
a polyion complex [12] of 2C12GluphC4N + with 
poly(styrenesulphonate) anion, a water-insoluble, 
chiral bilayer film was fabricated on a quartz plate, 
and a possible application for a solid-phase assay of 
methanol was investigated. 

2. Experimental procedure 
A bilayer-forming amphiphile, 2C12GluphC4N + and 
its polyion complex, 2C 12GluphC4N + PSS- were syn- 
thesized according to the literature [8, 12]. 
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Figure 1 Schematic illustration of bilayer phase transition. 
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Methanol and ethanol were used as spectroscopic 
grade and other solvents were used as extra-pure 
grade. CD spectra and absorption spectra of the chiral 
bilayer membranes were measured with a JASCO J- 
40AS spectropolarimeter and a Hitachi 556 spectro- 
photometer, respectively. The temperature was con- 
trolled with a Haake F-3 constant-temperature bath. 

For CD measurements of aqueous bilayers, a 
weighed amount of 2C12GluphC4 N+ was taken in a 
flask and dissolved in a small portion of chloroform. 
After evaporation of the solvent, the lipid was dis- 
persed in 0.1ra aqueous tetramethylammonium 
chloride (TMAC1) solution by warming and gently 
shaking. The resulting transparent solution of 
2C12GluphCgN + (10 -r M) was stored at 5 ~ for 1 h, 
then 3 cm 3 portions of the solution was taken to a 
quartz cuvette (optical path length, 10 mm) and alco- 
hol addition experiments were conducted. Added al- 
cohol concentration was calculated by density data 
[13] of aqueous organic solution. 

A 50-~tl portion of chloroform solution of 
2C12GluphC4N+PSS - (0.1 r~) was dropped onto a 
quartz plate and the solvent evaporated under con- 
stant temperature (20~ and constant relative 
humidity (40%). The obtained membrane-immobi- 
lized plate was then immersed in water (5 ~ for 1 h. 
Absorption spectra were measured for several spots of 
the resulting film and the uniformity was checked. The 
lipid films which showed less than 10% of deviation in 
absorbance at 254 nm were used for the following 
study. The plate was immersed in a quartz cuvette 
filled with aqueous alcohol solutions containing 0.1 M 
aqueous TMAC1, and CD spectra were measured. 

3.  R e s u l t s  a n d  d i s c u s s i o n  
3.1. Effect of alcohol concentration in 

aqueous system 
As reported before, the bilayer assembly of 
2C12GluphC4N § formed in aqueous solution shows 
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Figure 2 CD spectra of the 2Ca2GluphC4 N+ bilayer in the presence of (a) methanol and (b) ethanol. Numerical values: added volume of 
alcohol. Experimental conditions: [2C12GluphC4 N+] = 10 -4 M; temperature, 15 ~ ionic strength, 0.1 (TMACI). 
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marked enhancement of CD at temperatures below 
phase transition (maximum at 260nm:[0]  = 
- 4 0 0 0 0 0 )  [9]. This is induced by a strong exciton 

coupling between the adjacent chromophores which 
align in a highly ordered configuration in the chiral 
bilayers. The enhancement disappears according to 
the phase transition (To, 31~ of the organizates 
(maximum at 245 nm: [0] = 6000) [9]. 

CD spectra of water-dispersed 2C12GluphC4N + in 
the presence of methanol and ethanol at 15 ~ are 
shown in Fig. 2. The CD intensity decreased with 
addition of alcohol and became constant after a few 
minutes. Fig. 3 demonstrates suppression of CD in- 
tensity at 260 nm against alcohol concentration. A 
slight deviation in the initial [~'1260 value (less than 
_+ 5%) was observed depending on the preparation of 
bilayers. Thus the initial [0]z6o value was chosen as a 
standard, and the relative molar ellipticities at added 
alcohol concentration were plotted. 

As can be seen in Fig. 3, the degree of CD suppres- 
sion increased with the increase of each added alcohol. 
In the present study, alcohol concentrations at the 
relative molar ellipticity of 0.5, Co. s, were used as a 
measure of the degree of CD suppression and were 
plotted against their partition coefficient, P, in an 
octanol/water system [14] (Fig. 4). Although the plots 
are relatively scattered, they are correlated by a 
straight line with a slope of 1. Thus the two-phase 
partition phenomena between the aqueous and bilayer 
phases seems to be the cause of CD suppression�9 
Added alcohols are extracted to the bilayer phase, and 
this leads to disintegration of the ordered configura- 
tion of chromophores. The decrease in dielectric con- 
stant of the bulk medium accompanied by alcohol 
addition is also expected to suppress the CD intensity. 
However, the plot with dielectric data 1-15] of water/ 
alcohol mixed solvent systems instead of with log P 
does not give such major dependence of the CD 
response. 

3.2. App l i ca t i on  as  s o l i d - p h a s e  a s say  
Fig. 5a shows CD spectra of 2C~2GluphC4N+PSS - 
films on a quartz plate at various temperatures. The 
molar absorption coefficient of 2C~zGluphC4 N+ in 
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Figure 3 CD spectral response of 2C12GIuphC4N + bilayer to vari- 
ous alcohol. (3, Methanol; 0, ethanol; A, propanol; A butanol; 
D, pentanol. Experimental conditions as in Fig. 2. 
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Figure4 Log P against log Co. s. Bar, expected value of P in [10]. 
Experimental conditions as in Fig. 2. 
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Figure5 (a) Temperature dependence of CD spectra of 
2ClzGluphC4N+PSS - bilayer film on a quartz plate. Ionic 
strength, 0.1 (TMAC1). (b) Plots of [0126S.ob, against temperature. 
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Figure 6 CD spectral response of 2C12GluphC4N+PSS - bilayer 
film to methanol.  15 ~ ionic strength, 0.1 (TMAC1). 

aqueous solution at 254 nm (1.26 x 104tool -1 dm 3) 
was used for the sake of convenience in calculating the 
apparent molar ellipticity of the film at 265 nm, 
[01265,obs. Fig. 5b shows its temperature dependence. 
The immobilized film also shows a drastic temper- 
ature dependence of CD spectra due to phase tran- 
sition. The CD intensity of the film was twice that of 
the aqueous dispersion. This is probably due to the 
contribution of linear dichroism which appears sensi- 
tively in oriented solid crystal [16], but we do not 
discuss this topic in detail here. The CD spectral 
response of the bilayer film to methanol is shown in 
Fig. 6. The gradual decrease of [01265,obs was observed 
according to the increase in methanol concentration. 
The response time was several minutes after immer- 
sion into the sample solution. 

in both aqueous and solid-phase systems. The present 
technique is applicable to a wide variety of chemicals 
which interact with the organizates and change their 
ordered structures. The ,basic idea described here is 
important to analytical aspects of utilizing organized 
bilayer assemblies. 
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A potential use of synthetic chiral bilayer membrane 
as a spectroscopic transducer has been demonstrated 
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